Novel PAX9 and COL1A2 Missense Mutations Causing Tooth Agenesis and OI/DGI without Skeletal Abnormalities
نویسندگان
چکیده
Inherited dentin defects are classified into three types of dentinogenesis imperfecta (DGI) and two types of dentin dysplasia (DD). The genetic etiology of DD-I is unknown. Defects in dentin sialophosphoprotein (DSPP) cause DD type II and DGI types II and III. DGI type I is the oral manifestation of osteogenesis imperfecta (OI), a systemic disease typically caused by defects in COL1A1 or COL1A2. Mutations in MSX1, PAX9, AXIN2, EDA and WNT10A can cause non-syndromic familial tooth agenesis. In this study a simplex pattern of clinical dentinogenesis imperfecta juxtaposed with a dominant pattern of hypodontia (mild tooth agenesis) was evaluated, and available family members were recruited. Mutational analyses of the candidate genes for DGI and hypodontia were performed and the results validated. A spontaneous novel mutation in COL1A2 (c.1171G>A; p.Gly391Ser) causing only dentin defects and a novel mutation in PAX9 (c.43T>A; p.Phe15Ile) causing hypodontia were identified and correlated with the phenotypic presentations in the family. Bone radiographs of the proband's dominant leg and foot were within normal limits. We conclude that when no DSPP mutation is identified in clinically determined isolated DGI cases, COL1A1 and COL1A2 should be considered as candidate genes. PAX9 mutation p.Phe15Ile within the N-terminal β-hairpin structure of the PAX9 paired domain causes tooth agenesis.
منابع مشابه
Mutations in COL1A1 and COL1A2 and dental aberrations in children and adolescents with osteogenesis imperfecta – A retrospective cohort study
Osteogenesis imperfecta (OI) is a heterogeneous group of disorders of connective tissue, caused mainly by mutations in the collagen I genes (COL1A1 and COL1A2). Dentinogenesis imperfecta (DGI) and other dental aberrations are common features of OI. We investigated the association between collagen I mutations and DGI, taurodontism, and retention of permanent second molars in a retrospective coho...
متن کاملNext-Generation Sequencing Reveals One Novel Missense Mutation in COL1A2 Gene in an Iranian Family with Osteogenesis imperfecta
Background: Osteogenesis imperfecta (OI) is a clinically and genetically heterogeneous disorder characterized by bone loss and bone fragility. The aim of this study was to investigate the variants of three genes involved in the pathogenesis of OI. Methods: Molecular genetic analyses were performed for COL1A1, COL1A2, and CRTAP genes in an Iranian family with OI. The DNA samples were analyzed by...
متن کاملIdentification and functional analysis of two novel PAX9 mutations.
The paired-domain transcription factor PAX9 plays a critical role in tooth development, as heterozygous mutations in PAX9 have been shown to be associated with human tooth agenesis. In this study, we report 2 novel missense mutations, gly6arg (G6R) and ser43lys (S43K), in the paired domain of PAX9 in Chinese patients with varying degrees of nonsyndromic tooth agenesis. Excluding third molars, t...
متن کاملA review on non-syndromic tooth agenesis associated with PAX9 mutations
Tooth agenesis in the reduction of tooth number which includes hypodontia, oligodontia and anodontia is caused by disturbances and gene mutations that occur during odontogenesis. To date, several genetic mutations that unlock the causes of non-syndromic tooth agenesis are being discovered; these have been associated with certain illnesses because tooth development involves the interaction of se...
متن کاملPathogenic mechanisms of tooth agenesis linked to paired domain mutations in human PAX9.
Mutations in the paired-domain transcription factor PAX9 are associated with non-syndromic tooth agenesis that preferentially affects posterior dentition. Of the 18 mutations identified to date, eight are phenotypically well-characterized missense mutations within the DNA-binding paired domain. We determined the structural and functional consequences of these paired domain missense mutations an...
متن کامل